数学模型是怎样描述传染病的?别担心,数学没

在人类与传染病作斗争的漫长历史中,除了在一线救死扶伤的医生,还有一个特殊的群体为遏制疾病蔓延做出了重要的贡献,那就是数学家。

在大多数人印象中,数学是抽象而晦涩的,似乎和公共卫生完全搭不上关系。事实上,大家在面对传染病时遇到的问题,比如为什么接触过患病者的人需要被隔离、疫情爆发1个月后有多少人被感染、拐点什么时候能够到来,都或多或少可以从数学模型的角度来做出预测和解读。也正是依靠数学家对于传染病抽象化的研究,人们对于传染病的传播模式和严重危害有了更为深刻的认识。

对传染病建模的历史

用数学模型研究传染病的做法,最早可以追溯到18世纪初。那时候天花病毒正在肆虐欧洲,人们发现东方传入的人痘接种术似乎能够治愈这种疾病,但接种后仍有很高的死亡率,这引起了大数学家丹尼尔·伯努利(Johann Bernoulli)的注意。伯努利是流体力学的祖师爷,同时也学过一点医学,听说了天花接种的疗法后,他便开始琢磨怎么用数学去描述天花的传播以及接种的功效。

受限于时代,伯努利的想法比较朴素,他将人群分成感染者与未感染者,感染者既有可能治愈变成未感染者,也会因病死亡。伯努利的高明之处在于,他考虑了人的年龄也就是时间因素,假定疾病治愈率与研究人群的年龄段相关,以此建立了数学方程。

经过一番计算研究,伯努利得出结论:尽管有一定风险,人痘接种在统计上仍然能让人的寿命延长3年左右。

虽然以现在的眼光看,伯努利的研究一点也不严谨,得出的结论也是显而易见的(接种疫苗有助于控制疾病传播),人痘接种术在牛痘疫苗出现后也几乎销声匿迹,但伯努利是第一个尝试用数据和方程去分析传染病传播趋势、判断控制措施有效性的数学家,这种科学思维在那个人类完全被传染病支配的时代显得尤为珍贵,直到今天仍然是用数学方法研究传染病的最基本思想。

100多年后的20世纪初,用数学模型研究传染病的方法(后来发展为一门叫“数理流行病学”的学科)迎来了飞速发展,这很大程度上要归功于苏格兰军医麦肯德里克(Anderson Gray McKendrick)和生物化学家威廉·克马克(William Kermack)。