YOLO之父宣布退出CV界,坦言无法忽视自己工作带

我们可能看不到根红苗正的 YOLO v4 面世了。

「YOLO 之父」Joseph Redmon 宣布退出计算机视觉领域了!这个刚刚出现的消息着实让人工智能界感到惊讶。


在社交网络上,这位 YOLO、SSD 等知名 AI 算法的发明者昨天突然声明:出于道德上的考虑,他决定停止一切有关计算机视觉的研究。

在 AI 领域,这还是第一次。


推文链接:https://twitter.com/jeremyphoward/status/1230610470991589376

在有关「不应该发表的重要研究」的长篇讨论中,Redmon 现身发表了自己的看法:「我现在已经停止了计算机视觉研究,因为我看到了自己工作造成的影响。我热爱自己的作品,但我已经无法忽视它在军事领域的应用以及给个人隐私带来的风险。」

他还表示,一些学者的想法是错误的,他们认为,「我们不必考虑新研究的社会影响,因为这很困难,而且其他人也会帮我们做。」

「尽管在大学阶段我们一直被灌输科学研究是中立的,无论其内容如何。但如果我们认真考虑广泛的影响,则基本所有面部识别工作都不应被发表:它们几乎不会带来好处,尽是负面风险。」

为什么突然有了这样一番话?一切讨论似乎都是由最近人工智能顶会 NeurIPS 2020 的全新论文接收标准引发的。

在今年正在进行的大会论文提交过程中,除了提前截稿、提前拒稿,让论文作者当审稿人等一系列新操作之外,还有一条就是必须提交「广泛影响声明」:


在 NeurIPS 2020 大会官网论文提交指南中,论文评审重大变化的第五条。

NeurIPS 2020 候选论文的作者被要求在他们提交论文的文件中加入新的讨论部分,阐述其新工作可能产生的广泛影响,包括一些可能造成的正面和负面社会影响。

近年来,随着 AI 领域的快速发展,人们对于科技的思考也越来越多。投向 NeurIPS 的新研究,显然代表了人工智能领域最先进的技术。但新科技对于社会发展的影响,或许是科学家们此前有所忽略的地方。不过有关研究广泛影响的考量竟让计算机视觉领域的大牛选择隐退江湖,着实让人惊讶。

Redmon 和快到没朋友的 YOLO

说到 YOLO,相信每个计算机视觉从业者都不陌生。它是一种非常常用的目标检测算法,任务是找出图像中我们感兴趣的目标,确定其大小和位置并识别出具体是哪个对象。从自动驾驶到人脸识别,很多日常生活中的常见任务都离不开这种算法。

YOLO 模型最早是由 Joseph Redmon 等人在 2015 年提出的,并在随后的几篇论文中进行了修订。

Faster R-CNN 及在其基础上改进的 Mask R-CNN 在实例分割、目标检测、人体关键点检测等任务上都取得了很好的效果,但通常较慢。而 YOLO 的创新之处在于,它提出了 one-stage,即目标定位和目标识别在一个步骤中完成,是名副其实的「You Only Look Once」。

由于 YOLO 只使用单个网络,因此可以直接在检测性能上进行端到端优化,使得基础 YOLO 模型能以每秒 45 帧的速度实时处理图像。YOLO 的一个小规模版本——Fast YOLO 可以达到每秒 155 帧的处理速度。

YOLO 有着让人惊艳的速度,同时也有让人止步的缺陷:不擅长小目标检测。为了弥补这一缺陷,2018 年,Redmon 等人发布了 YOLO v3。这一新版本保持了 YOLO 的速度优势,提升了模型精度,尤其加强了小目标、重叠遮挡目标的识别,补齐了 YOLO 的短板,是目前速度和精度均衡的目标检测网络。

研究者们对于 YOLO 下一个版本的展望主要在于三个方面:更高的识别准确率、更加广泛的实时监测,以及更轻量化的模型。在 GitHub 上,人们对于 v4 版本什么时候出的问题,得到的答案一直是「coming soon」。

一直以来,Joseph Redmon 跟随 Allen School 教授 Ali Farhadi 从事计算机视觉研究,他是 2018 年度谷歌博士奖学金的获得者,理由是在「创造更快、更好、更有用的计算机视觉应用工具」方面的贡献。

调查阅读排行